ÌâÄ¿ÄÚÈÝ
£¨2009•ÉϺ£Ä£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡£¬Bn£¨n£¬yn£©£¬¡£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡£¬An£¨xn£¬0£©£¬¡£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©¶ÔÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1Ìí¼ÓÊʵ±Ìõ¼þ£¬Ìá³öÒ»¸öÎÊÌ⣬²¢×ö³ö½â´ð£®£¨¸ù¾ÝËùÌáÎÊÌâ¼°½â´ðµÄÍêÕû³Ì¶È£¬·Öµµ´Î¸ø·Ö£©
x | 4 |
£¨1£©Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©¶ÔÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1Ìí¼ÓÊʵ±Ìõ¼þ£¬Ìá³öÒ»¸öÎÊÌ⣬²¢×ö³ö½â´ð£®£¨¸ù¾ÝËùÌáÎÊÌâ¼°½â´ðµÄÍêÕû³Ì¶È£¬·Öµµ´Î¸ø·Ö£©
·ÖÎö£º£¨1£©¸ù¾ÝBn£¨n£¬yn£©ÔÚÖ±Ïßy=
ÉϿɵÃyn=
£¬È»ºó¸ù¾ÝµÈ²îÊýÁеĶ¨Òå¿ÉÖªÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÓÉÌâÒâµÃ
=n£¬Ôòxn+xn+1=2n£¬¸ù¾ÝµÝÍƹØϵÓÖÓÐxn+2+xn+1=2£¨n+1£©Á½Ê½×÷²î¿ÉµÃxn+2-xnÊdz£Êý£¬´Ó¶øx1£¬x3£¬x5£¬¡£»x2£¬x4£¬x6£¬¡¶¼ÊǵȲîÊýÁУ¬¼´¿ÉÇó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®ÌÖÂÛnµÄÆæż£¬Çó³ö|AnAn+1|£¬¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
£¬ÒªÊ¹µÈÑüÈý½ÇÐÎAnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬±ØÐëÇÒÖ»Ð룺|AnAn+1|=2|BnCn|£¬´Ó¶øÇó³öaµÄÖµ£®
x |
4 |
n |
4 |
£¨2£©ÓÉÌâÒâµÃ
xn+xn+1 |
2 |
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®ÌÖÂÛnµÄÆæż£¬Çó³ö|AnAn+1|£¬¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
n |
4 |
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÓÐyn=
£¬ÓÚÊÇyn+1-yn=
£®
ËùÒÔÊýÁÐ{yn}ÊǵȲîÊýÁУ®£¨4·Ö£©
£¨2£©ÓÉÌâÒâµÃ
=n£¬¼´xn+xn+1=2n£¬£¨n¡ÊN*£© ¢Ù
ËùÒÔÓÖÓÐxn+2+xn+1=2£¨n+1£©£®¢Ú
ÓÉ¢Ú-¢ÙµÃ£ºxn+2-xn=2£¬ËùÒÔxn+2-xnÊdz£Êý£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨6·Ö£©
ÓÉx1£¬x3£¬x5£¬¡£»x2£¬x4£¬x6£¬¡¶¼ÊǵȲîÊýÁУ®x1=a£¨0£¼a£¼1£©£¬x2=2-a£¬ÄÇôµÃ
x2k-1=x1+2£¨k-1£©=2k+a-2£¬x2k=x2+2£¨k-1£©=2-a+2£¨k-1£©=2k-a£®£¨k¡ÊN*£©£¨8·Ö£©
¹Êxn=
£¨10·Ö£©
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®
½â£ºµ±nΪÆæÊýʱ£¬An£¨n+a-1£¬0£©£¬An+1£¨n+1-a£¬0£©£¬ËùÒÔ|AnAn+1|=2£¨1-a£©£»
µ±nΪżÊýʱ£¬An£¨n-a£¬0£©£¬An+1£¨n+a£¬0£©£¬ËùÒÔ|AnAn+1|=2a£»
¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
£¬ÒªÊ¹µÈÑüÈý½ÇÐÎAnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬±ØÐëÇÒÖ»Ð룺|AnAn+1|=2|BnCn|£®£¨13·Ö£©
µ±nΪÆæÊýʱ£¬ÓÐ2(1-a)=2¡Á
£¬¼´a=1-
¢Ù
¡àµ±n=1 ʱ£¬a=
£»µ± n=3 ʱ£¬a=
£¬µ±n¡Ý5£¬a£¼0²»ºÏÌâÒ⣮£¨15·Ö£©
µ±nΪżÊýʱ£¬ÓÐ2a=2¡Á
£¬a=
£¬Í¬Àí¿ÉÇóµÃ
µ±n=2 ʱ a=
µ±n¡Ý4ʱ£¬a£¼0²»ºÏÌâÒ⣮£¨17·Ö£©
×ÛÉÏËùÊö£¬Ê¹µÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÓÐÖ±½ÇÈý½ÇÐΣ¬aµÄֵΪ
»ò
»ò
£®£¨18·Ö£©
n |
4 |
1 |
4 |
ËùÒÔÊýÁÐ{yn}ÊǵȲîÊýÁУ®£¨4·Ö£©
£¨2£©ÓÉÌâÒâµÃ
xn+xn+1 |
2 |
ËùÒÔÓÖÓÐxn+2+xn+1=2£¨n+1£©£®¢Ú
ÓÉ¢Ú-¢ÙµÃ£ºxn+2-xn=2£¬ËùÒÔxn+2-xnÊdz£Êý£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨6·Ö£©
ÓÉx1£¬x3£¬x5£¬¡£»x2£¬x4£¬x6£¬¡¶¼ÊǵȲîÊýÁУ®x1=a£¨0£¼a£¼1£©£¬x2=2-a£¬ÄÇôµÃ
x2k-1=x1+2£¨k-1£©=2k+a-2£¬x2k=x2+2£¨k-1£©=2-a+2£¨k-1£©=2k-a£®£¨k¡ÊN*£©£¨8·Ö£©
¹Êxn=
|
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®
½â£ºµ±nΪÆæÊýʱ£¬An£¨n+a-1£¬0£©£¬An+1£¨n+1-a£¬0£©£¬ËùÒÔ|AnAn+1|=2£¨1-a£©£»
µ±nΪżÊýʱ£¬An£¨n-a£¬0£©£¬An+1£¨n+a£¬0£©£¬ËùÒÔ|AnAn+1|=2a£»
¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
n |
4 |
µ±nΪÆæÊýʱ£¬ÓÐ2(1-a)=2¡Á
n |
4 |
n |
4 |
¡àµ±n=1 ʱ£¬a=
3 |
4 |
1 |
4 |
µ±nΪżÊýʱ£¬ÓÐ2a=2¡Á
n |
4 |
n |
4 |
µ±n=2 ʱ a=
1 |
2 |
µ±n¡Ý4ʱ£¬a£¼0²»ºÏÌâÒ⣮£¨17·Ö£©
×ÛÉÏËùÊö£¬Ê¹µÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÓÐÖ±½ÇÈý½ÇÐΣ¬aµÄֵΪ
3 |
4 |
1 |
4 |
1 |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐÓ뼸ºÎµÄ×ۺϣ¬Í¬Ê±¿¼²éÁËÊýÁеÄͨÏʽ£¬µÚÈýÎÊÊÇ¿ª·ÅÌ⣬ÓÐÒ»¶¨µÄÐÂÒ⣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿