题目内容
【题目】已知函数,曲线在处的切线交轴于点.
(1)求的值;
(2)若对于内的任意两个数,,当时,恒成立,求实数的取值范围.
【答案】(1)(2)
【解析】
(1)求出原函数的导函数,得到f′(1),求出f(1),可得切线方程,代入(0,)即可求得m值;
(2)把(1)中求得的m值代入函数解析式,设x1>x2,把对于(1,+∞)内的任意两个数x1,x2,a(x1+x2)转化为,设g(x)=f(x)﹣ax2,则g(x)=x2lnxx3+x﹣ax2 在(1,+∞)上为减函数,可得g′(x)=2xlnx+x﹣x2+1﹣2ax≤0对x>1恒成立,分离参数a,再由导数求最值得答案.
解:(1)由,得,
,,
∴曲线在处的切线方程为,
则,解得;
(2),
不妨设,对于内的任意两个数,,,
即有,
设,则在上为减函数.
则对恒成立.
可得在上恒成立.
令,,
则在上单调递减,
∴.
∴,即.
∴实数的取值范围是.
练习册系列答案
相关题目