题目内容
【题目】“金镶玉”是北京奥运会的奖牌设计所采用的式样,喻示中国传统文化中的“金玉良缘”,体现了中国人对奥林匹克精神的礼赞和对运动员的褒奖.它的设计方案,创意十分新颖,突破了以往任何一届奥运会奖牌设计单一材质的传统,又融入了典型的中国文化元素,是中国文化与体育精神完美结合的载体.现有一矩形玉片,为毫米,为32毫米,为的中点.现要开槽镶嵌金丝,将其加工为镶金工艺品,如图,金丝部分为优弧和线段其中优弧所在圆的圆心为,圆与矩形的边分别相切于点以及点在线段上(在的左侧),分别于圆相切于点且.若优弧部分镶嵌的金丝每毫米造价为元(),线段部分镶嵌的金丝每毫米造价为元.记锐角镶嵌金丝的总造价为元.
(1)试表示出关于的函数并写出的范围;
(2)当镶嵌金丝的总造价最低时,求出四边形的面积.
【答案】(1),;(2).
【解析】
(1)用分别求出优弧的长以及的长,即可求出的表达式.当 重合时, 取最小.
(2)求出,运用导数的思想,求出取最小值时的的值,进而求出的长,根据梯形的面积公式即可求.
(1)解:如图,过点作的垂线,垂足为,过作的垂线,垂足为.
由圆与矩形相切可知,圆的半径为16,
则,
,
因为与圆相切,切点为,所以,则,
所以,
即,
.
因为优弧的圆心角为,所以优弧的长为,
所以
.
考虑临界状态,当 三点重合时, 为直角三角形,其中,
,即.
(2)解:由(1)知
,
其中.
令,得或(舍去).
因为为锐角,所以.
当 时,,则单调递减;
当 时,,则单调递增即当时,,取最小值.
此时,
.
【题目】某市为了调查小区成年居民对环境治理情况的满意度(满分按100计),随机对20名六十岁以上的老人和20名十八岁以上六十岁以下的中青年进行了不记名的问卷调查,得到了如下统计结果:
表1:六十岁以上的老人对环境治理情况的满意度与频数分布表
满意度 | |||||
人数 | 1 | 5 | 6 | 5 | 3 |
表2:十八岁以上六十岁以下的中青年人对环境治理情况的满意度与频数分布表
满意度 | |||||
人数 | 2 | 4 | 8 | 4 | 2 |
表3:
满意度小于80 | 满意度不小于80 | 合计 | |
六十岁以上老人人数 | |||
十八岁以上六十岁以下的中青年人人数 | |||
合计 |
(1)若该小区共有中青年人500人,试估计其中满意度不少于80的人数;
(2)完成表3的列联表,并回答能否有的把握认为“小区成年居民对环境治理情况的满意度与年龄有关”?
(3)从表3的六十岁以上的老人“满意度小于80”和“满意度不小于80”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取3人,求至少有两人满意小于80的概率.
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |