题目内容
【题目】如图,在平面直角坐标系中,已知抛物线的焦点为,准线与轴的交点为.过点的直线与抛物线相交于、两点,、分别与轴相交于、两点,当轴时,.
(1)求抛物线的方程;
(2)设的面积为,面积为,求的取值范围.
【答案】(1);(2).
【解析】
(1)当轴时,求出,利用勾股定理可求得正数的值,进而可得出抛物线的标准方程;
(2)设直线的方程为,设点、,求出点、的坐标,进而可求得、关于的表达式,可得出关于的表达式,利用不等式的基本性质可求得的取值范围.
(1)当轴时,直线的方程为,联立,可得,
则,且,,解得,
因此,抛物线的标准方程为;
(2)设直线的方程为,
由,得,
设点、,所以,,
直线方程为,
令,得,同理,
所以
其中,
则,当时等号成立,
因此的取值范围为.
练习册系列答案
相关题目
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,在高三年级中随机选取名学生进行跟踪问卷,其中每周线上学习数学时间不少于小时的有人,在这人中分数不足分的有人;在每周线上学习数学时间不足于小时的人中,在检测考试中数学平均成绩不足分的占.
(1)请完成列联表;并判断是否有的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
分数不少于分 | 分数不足分 | 合计 | |
线上学习时间不少于小时 | |||
线上学习时间不足小时 | |||
合计 |
(2)在上述样本中从分数不足于分的学生中,按照分层抽样的方法,抽到线上学习时间不少于小时和线上学习时间不足小时的学生共名,若在这名学生中随机抽取人,求这人每周线上学习时间都不足小时的概率.(临界值表仅供参考)
(参考公式,其中)