题目内容

【题目】由四棱柱截去三棱锥后得到的几何体如图所示,四边形是边长为的正方形,的交点,的中点,平面

)证明:平面

)若直线与平面所成的角为,求线段的长.

【答案】)证明见解析;(.

【解析】

)取的中点,连接,证明四边形为平行四边形,可得出,再利用线面平行的判定定理可证明出平面

)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,计算出平面的一个法向量,利用直线与平面所成的角为,计算出的值,进而得解.

)取的中点,连接

由于为四棱柱,所以,

四边形为平行四边形,则

分别为的中点,所以,且

因此四边形为平行四边形,所以

平面平面,所以平面

)如图,建立空间直角坐标系,设

易知,从而可得

设平面的法向量为

,故有,解得

可取

由题意得

解得,即线段的长为

练习册系列答案
相关题目

【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:

1)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;

2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

会员等级

消费金额

普通会员

2000

银卡会员

2700

金卡会员

3200

预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖励 600 元; 金卡会员中的“幸运之星”每人奖励 800 .

方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有 3 个白球、 2 个红球(球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) .

以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网