题目内容
【题目】在平面四边形中(图1),为的中点,,且,现将此平面四边形沿折起,使得二面角为直二面角,得到一个多面体,为平面内一点,且为正方形(图2),分别为的中点.
(1)求证:平面//平面;
(2)在线段上是否存在一点,使得平面与平面所成二面角的余弦值为?若存在,求出线段的长,若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在,且
【解析】
(1)利用面面平行的判定定理,证明平面//平面.
(2)建立空间直角坐标系,设出点坐标,利用平面与平面所成二面角的余弦值为列方程,解方程求得的坐标,由此判断符合题意的点存在,以及求得的长.
(1)由于分别为的中点,所以由线面平行的判定定理可得//平面.可得//平面,而直线与直线相交,由面面平行的判定定理得平面//平面.
(2)因为二面角为直二面角,又,所以,由此建立如图所示的空间直角坐标系.,,,则,设平面的法向量为,则,取得.
设,则,设平面的法向量为,则,取得.由平面与平面所成二面角的余弦值为得,解得,所以,.所以存在点,使得平面与平面所成二面角的余弦值为,且
【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
学校 | ||||
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?