题目内容
【题目】在锐角△ABC中,角A,B,C的对边分别为a,b,c,若a=2,,则角A的取值范围是_____.
【答案】
【解析】
先利用商数关系代替原等式中的,然后利用二倍角公式和余弦的两角和公式进行化简,可得2A=B,因为A+B+C=π,所以C=π﹣3A,由于△ABC为锐角三角形,所以A、B、C均为锐角,据此可以解出角A的范围.
∵,∴cos2A+cosAcosC=sin2A+sinAsinC,
∴cos2A﹣sin2A=﹣(cosAcosC﹣sinAsinC),即cos2A=﹣cos(A+C)=cosB,
在锐角△ABC中,2A=B,∴,
又A+B+C=π,∴3A+C=π,即C=π﹣3A,
∵,∴π﹣3A,∴,
综上所述,角A的取值范围是.
故答案为:.
练习册系列答案
相关题目
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”
男 | 女 | 总计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
总计 | 100 |
附:.
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |