题目内容
【题目】函数f(x)是R上的偶函数,且当x>0时,函数的解析式为 .
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求当x<0时,函数的解析式.
【答案】
(1)证明:∵ ,任取x1,x2∈(0,+∞),且x1<x2;
则f(x1)﹣f(x2)=( ﹣1)﹣( ﹣1)= ;
∵0<x1<x2,∴x2﹣x1>0,x1x2>0;
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2);
∴f(x)在(0,+∞)上是减函数
(2)解:当x<0时,﹣x>0,
∵x>0时, ,
∴f(﹣x)= ﹣1=﹣ ﹣1,
又∵f(x)是R上的偶函数,
∴f(﹣x)=f(x)
∴f(x)=﹣ ﹣1;
即x<0时,f(x)=﹣ ﹣1
【解析】(1)用函数的单调性定义证明f(x)在(0,+∞)上是减函数;(2)应用偶函数的性质f(﹣x)=f(x),与x>0时f(x)的解析式,可以求出x<0时f(x)的解析式.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.
练习册系列答案
相关题目
【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:
单价x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
销量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(I)画出散点图,并求关于的回归方程;
(II)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线的斜率和截距的最小二乘法估计公式分别为: