题目内容
18.已知数列{an}满足:a1=2t-2(t∈R且t≠±1),an+1=$\frac{2({t}^{n+1}-1){a}_{n}}{{a}_{n}+2{t}^{n}-2}$(n∈N*).(1)求数列{an}的通项公式;
(2)若t>0,试比较an+1与an的大小.
分析 (1)通过对an+1=$\frac{2({t}^{n+1}-1){a}_{n}}{{a}_{n}+2{t}^{n}-2}$(n∈N*)变形可知$\frac{{t}^{n+1}-1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{{t}^{n}-1}{{a}_{n}}$,进而数列{$\frac{{t}^{n}-1}{{a}_{n}}$}是以首项、公差均为$\frac{1}{2}$的等差数列,进而计算可得结论;
(2)通过(1)作差可知an+1-an=$\frac{2(t-1)}{n(n+1)}$•[(tn-1)+(tn-t)+…+(tn-tn-1)]=$\frac{2(t-1)^{2}}{n(n+1)}$•[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],利用t>0且t≠1计算即得结论.
解答 解:(1)∵an+1=$\frac{2({t}^{n+1}-1){a}_{n}}{{a}_{n}+2{t}^{n}-2}$(n∈N*),
∴$\frac{{a}_{n+1}}{{t}^{n+1}-1}$=$\frac{2{a}_{n}}{{a}_{n}+2{t}^{n}-2}$,
∴$\frac{{t}^{n+1}-1}{{a}_{n+1}}$=$\frac{{a}_{n}+2{t}^{n}-2}{2{a}_{n}}$=$\frac{1}{2}$+$\frac{{t}^{n}-1}{{a}_{n}}$,
又∵$\frac{t-1}{{a}_{1}}$=$\frac{t-1}{2t-2}$=$\frac{1}{2}$,
∴数列{$\frac{{t}^{n}-1}{{a}_{n}}$}是以首项、公差均为$\frac{1}{2}$的等差数列,
∴$\frac{{t}^{n}-1}{{a}_{n}}$=$\frac{n}{2}$,
∴an=$\frac{2}{n}$•(tn-1),
又∵a1=2t-2满足上式,
∴数列{an}的通项公式an=$\frac{2}{n}$•(tn-1);
(2)由(1)可知an+1-an=$\frac{2}{n+1}$•(tn+1-1)-$\frac{2}{n}$•(tn-1)
=$\frac{2(t-1)}{n(n+1)}$[n(1+t+…+tn-1+tn)-(n+1)(1+t+…+tn-1)]
=$\frac{2(t-1)}{n(n+1)}$•[ntn-(1+t+…+tn-1)]
=$\frac{2(t-1)}{n(n+1)}$•[(tn-1)+(tn-t)+…+(tn-tn-1)]
=$\frac{2(t-1)^{2}}{n(n+1)}$•[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],
∵t>0且t≠1,
∴$\frac{2(t-1)^{2}}{n(n+1)}$>0,(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1>0,
∴an+1-an>0,即an+1>an.
点评 本题考查数列的通项,考查运算求解能力,准确变形利用倒数法构造等差数列是解决问题的关键,属于难题.
A. | (4,6) | B. | (2,3) | C. | (1,4) | D. | (0,1) |
A. | f(x)=2ex-3 | B. | f(x)=$\frac{2}{{e}^{x}}$-3 | C. | f(x)=2ex+3 | D. | f(x)=-$\frac{2}{{e}^{x}}$+3 |
A. | $\frac{7\sqrt{2}}{10}$ | B. | -$\frac{7\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |