题目内容
18.已知数列{an}满足:a1=2t-2(t∈R且t≠±1),an+1=2(tn+1−1)anan+2tn−22(tn+1−1)anan+2tn−2(n∈N*).分析 (1)通过对an+1=2(tn+1−1)anan+2tn−22(tn+1−1)anan+2tn−2(n∈N*)变形可知tn+1−1an+1tn+1−1an+1=1212+tn−1antn−1an,进而数列{tn−1antn−1an}是以首项、公差均为1212的等差数列,进而计算可得结论;
(2)通过(1)作差可知an+1-an=2(t−1)n(n+1)2(t−1)n(n+1)•[(tn-1)+(tn-t)+…+(tn-tn-1)]=2(t−1)2n(n+1)2(t−1)2n(n+1)•[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],利用t>0且t≠1计算即得结论.
解答 解:(1)∵an+1=2(tn+1−1)anan+2tn−22(tn+1−1)anan+2tn−2(n∈N*),
∴an+1tn+1−1an+1tn+1−1=2anan+2tn−22anan+2tn−2,
∴tn+1−1an+1tn+1−1an+1=an+2tn−22anan+2tn−22an=1212+tn−1antn−1an,
又∵t−1a1t−1a1=t−12t−2t−12t−2=1212,
∴数列{tn−1antn−1an}是以首项、公差均为1212的等差数列,
∴tn−1antn−1an=n2n2,
∴an=2n2n•(tn-1),
又∵a1=2t-2满足上式,
∴数列{an}的通项公式an=2n2n•(tn-1);
(2)由(1)可知an+1-an=2n+12n+1•(tn+1-1)-2n2n•(tn-1)
=2(t−1)n(n+1)2(t−1)n(n+1)[n(1+t+…+tn-1+tn)-(n+1)(1+t+…+tn-1)]
=2(t−1)n(n+1)2(t−1)n(n+1)•[ntn-(1+t+…+tn-1)]
=2(t−1)n(n+1)2(t−1)n(n+1)•[(tn-1)+(tn-t)+…+(tn-tn-1)]
=2(t−1)2n(n+1)2(t−1)2n(n+1)•[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],
∵t>0且t≠1,
∴2(t−1)2n(n+1)>0,(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1>0,
∴an+1-an>0,即an+1>an.
点评 本题考查数列的通项,考查运算求解能力,准确变形利用倒数法构造等差数列是解决问题的关键,属于难题.
A. | (4,6) | B. | (2,3) | C. | (1,4) | D. | (0,1) |
A. | f(x)=2ex-3 | B. | f(x)=2ex-3 | C. | f(x)=2ex+3 | D. | f(x)=-2ex+3 |
A. | 7√210 | B. | -7√210 | C. | √210 | D. | -√210 |