题目内容

18.已知数列{an}满足:a1=2t-2(t∈R且t≠±1),an+1=2tn+11anan+2tn22tn+11anan+2tn2(n∈N*).
(1)求数列{an}的通项公式;
(2)若t>0,试比较an+1与an的大小.

分析 (1)通过对an+1=2tn+11anan+2tn22tn+11anan+2tn2(n∈N*)变形可知tn+11an+1tn+11an+1=1212+tn1antn1an,进而数列{tn1antn1an}是以首项、公差均为1212的等差数列,进而计算可得结论;
(2)通过(1)作差可知an+1-an=2t1nn+12t1nn+1•[(tn-1)+(tn-t)+…+(tn-tn-1)]=2t12nn+12t12nn+1•[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],利用t>0且t≠1计算即得结论.

解答 解:(1)∵an+1=2tn+11anan+2tn22tn+11anan+2tn2(n∈N*),
an+1tn+11an+1tn+11=2anan+2tn22anan+2tn2
tn+11an+1tn+11an+1=an+2tn22anan+2tn22an=1212+tn1antn1an
又∵t1a1t1a1=t12t2t12t2=1212
∴数列{tn1antn1an}是以首项、公差均为1212的等差数列,
tn1antn1an=n2n2
∴an=2n2n•(tn-1),
又∵a1=2t-2满足上式,
∴数列{an}的通项公式an=2n2n•(tn-1);
(2)由(1)可知an+1-an=2n+12n+1•(tn+1-1)-2n2n•(tn-1)
=2t1nn+12t1nn+1[n(1+t+…+tn-1+tn)-(n+1)(1+t+…+tn-1)]
=2t1nn+12t1nn+1•[ntn-(1+t+…+tn-1)]
=2t1nn+12t1nn+1•[(tn-1)+(tn-t)+…+(tn-tn-1)]
=2t12nn+12t12nn+1•[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],
∵t>0且t≠1,
2t12nn+1>0,(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1>0,
∴an+1-an>0,即an+1>an

点评 本题考查数列的通项,考查运算求解能力,准确变形利用倒数法构造等差数列是解决问题的关键,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网