题目内容

【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线

)求的值和直线的直角坐标方程及的参数方程;

)已知曲线的参数方程为,(为参数),直线交于两点,求的值

【答案】的直角坐标方程为的参数方程为:

【解析】

)将点的极坐标方程代入直线的极坐标方程可求出的值,然后将直线方程化为普通方程,确定直线的倾斜角,即可将直线的方程表示为参数方程的形式;

)将曲线的参数方程表示普通方程,然后将()中直线的参数方程与曲线的普通方程联立,得到关于的一元二次方程,并列出韦达定理,根据的几何意义计算出

,于是可得出

的值。

解:()因为点,所以

于是的直角坐标方程为

的参数方程为: (t为参数)

)由

的参数方程代入

,设该方程的两根为,由直线的参数的几何意义及曲线知,

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网