题目内容
9.设等差数列{an}的前n项和为sn,则s4,s8-s4,s12-s8,s16-s12成等差数列.类比以上结论有:设等比数列{bn}前n项积为Tn,则T4,( ),$\frac{{{T_{16}}}}{{{T_{12}}}}$成等比数列.A. | $\frac{T_6}{T_4},\frac{{{T_{12}}}}{T_6}$ | B. | $\frac{T_8}{T_4},\frac{{{T_{12}}}}{T_8}$ | ||
C. | $\frac{{{T_{10}}}}{T_4},\frac{{{T_{12}}}}{{{T_{10}}}}$ | D. | $\frac{{{T_{16}}}}{T_4},\frac{{{T_{12}}}}{{{T_{16}}}}$ |
分析 由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性.
解答 解:设等比数列{bn}的公比为q,首项为b1,
则T4=b14q6,T8=b18q1+2++7=b18q28,
T12=b112q1+2++11=b112q66,
∴$\frac{T_{8}}{T_{4}}$=b14q22,$\frac{T_{12}}{T_{8}}$=b14q38,
即($\frac{T_{8}}{T_{4}}$)2=$\frac{T_{12}}{T_{8}}$•T4,故T4,$\frac{T_{8}}{T_{4}}$,$\frac{T_{12}}{T_{8}}$成等比数列.
故选:B.
点评 本题主要考查类比推理,类比推理一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关题目