题目内容
【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 9 | 10 | 11 | 8 | 12 |
发芽数(颗) | 38 | 30 | 24 | 41 | 17 |
利用散点图,可知线性相关。
(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;
(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.
(公式:)
【答案】(1);;(2)
【解析】
(1)先求出温差x和发芽数y的平均值,即得到样本中心点,利用最小二乘法得到线性回归方程的系数,根据样本中心点在线性回归直线上,得到的值,得到线性回归方程;再令x=5时,得y值;(2)利用列举法求出基本事件的个数,即可求出事件“这两组恰好是不相邻两天数据”的概率.
(1) ,,.
,,.
由公式,求得,.
所以y关于x的线性回归方程为,当,
(2)设五组数据为1,2,3,4,5则所有取值情况有:(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),即基本事件总数为10.
设“这两组恰好是不相邻两天数据”为事件A,则事件A包含的基本事件为(13),(14),(15),(24),(25),(35)所以P(A),故事件A的概率为.
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班45人进行了问卷调查得到了如下的列联表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 5 | ||
合计 | 45 |
已知在全部45人中随机抽取1人,是男同学的概率为
(1)请将上面的列联表补充完整;
(2)是否有的把握认为喜爱打篮球与性别有关,请说明理由。
附参考公式:
0.15 | 0,10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:
井号 | 1 | 2 | 3 | 4 | 5 | 6 |
坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:,,,)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.