题目内容

(本小题满分13分)设数列的前项和为,且
为等差数列,且
(Ⅰ)求数列通项公式;
(Ⅱ)设,求数列的前项和

(1)当时,.…………1分
时,,…………3分
此式对也成立. .………………………4分 ,
从而.又因为为等差数列,
公差,……………………………………………………………… 5分
.………………………………………………6分
(2)由(1)可知,…………………………7分
所以.①
.②……9分
①-②得:



.………………………………………………12分
.…………………………………………………13分

解析试题分析:(Ⅰ)由an= 可求数列{an}的通项公式,进而可求数列{bn}通项公式;
(Ⅱ)由(Ⅰ)可知cn=(2n-1)•2n-1,故可用错位相减法来求数列的前n项和.
考点:本试题主要考查了数列的求通项和求和的综合应用,涉及等差等比数列以及错位相减法求和,属中档题。
点评:解决该试题的易错点是错位相减法的准确求解,尤其是项数的确定问题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网