题目内容
【题目】已知函数.
(1)若,画出函数的图象,并指出函数的单调区间;
(2)讨论函数的零点个数.
【答案】(1)图象见解析;增区间为,减区间为(2)见解析.
【解析】
(1)将代入函数的表达式,并将该函数表示为分段函数,利用翻折变换可得出函数的图象,并利用图象得出该函数的增区间和减区间;
(2)令,得,则函数的零点个数转化为直线与函数的交点个数,结合(1)中的图象,可得出实数在不同取值下函数的零点个数.
(1)当时,.
令,即,得;
令,即,得.
,函数的图象如下图所示:
由图象可知,函数单调减区间为,增区间为;
(2)令,得,则函数的零点个数等价于直线与函数图象的交点个数.
如上图所示,当时,函数的零点个数为;
当或时,函数的零点个数为;
当时,函数的零点个数为.
练习册系列答案
相关题目