题目内容
【题目】若点为点在平面上的正投影,则记.如图,在棱长为的正方体中,记平面为,平面为,点是棱上一动点(与、不重合),.给出下列三个结论:
①线段长度的取值范围是;
②存在点使得平面;
③存在点使得.
其中,所有正确结论的序号是( )
A.①②③B.②③C.①③D.①②
【答案】D
【解析】
以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,设点的坐标为,求出点、的坐标,然后利用向量法来判断出命题①②③的正误.
取的中点,过点在平面内作,再过点在平面内作,垂足为点.
在正方体中,平面,平面,,
又,,平面,即,,
同理可证,,则,.
以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,设,则,,,,.
对于命题①,,,则,则,所以,,命题①正确;
对于命题②,,则平面的一个法向量为,
,令,解得,
所以,存在点使得平面,命题②正确;
对于命题③,,令,
整理得,该方程无解,所以,不存在点使得,命题③错误.
故选:D.
练习册系列答案
相关题目