题目内容
【题目】已知函数,曲线在点处的切线在y轴上的截距为.
(1)求a;
(2)讨论函数和的单调性;
(3)设,求证:.
【答案】(1) (2)为减函数,为增函数. (3)证明见解析
【解析】
(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);
(2)求函数的导数,由导数的正负确定单调性;
(3)不等式变形为,由递减,得(),即,即,依次放缩,.
不等式,递增得(),,,,先证,然后同样放缩得出结论.
解:(1)对求导,得.
因此.又因为,
所以曲线在点处的切线方程为
,
即.
由题意,.
显然,适合上式.
令,
求导得,
因此为增函数:故是唯一解.
(2)由(1)可知,,
因为,
所以为减函数.
因为,
所以为增函数.
(3)证明:由,易得.
由(2)可知,在上为减函数.
因此,当时,,即.
令,得,即.
因此,当时,.
所以成立.
下面证明:.
由(2)可知,在上为增函数.
因此,当时,,
即.
因此,
即.
令,得,
即.
当时,
.
因为,
所以,所以.
所以,当时,
.
所以,当时,成立.
综上所述,当时,成立.
练习册系列答案
相关题目