题目内容
【题目】已知圆上一动点,过点作轴,垂足为点,中点为.
(1)当在圆上运动时,求点的轨迹的方程;
(Ⅱ)过点的直线与交于两点,当时,求线段的垂直平分线方程.
【答案】(1);(2)或.
【解析】分析:(1)要求点的轨迹的方程,可设点的坐标为,由条件过点作轴,垂足为点,中点为,可写出点A的坐标。因为点在圆上,故可将点的坐标代入圆的方程,可得点的轨迹。
(2)要线段的垂直平分线方程,应先求直线的方程,所以应设直线的方程,根据弦长求直线的方程。因为直线的斜率是否存在不确定,为了避免讨论,可设直线方程为:,并与轨迹的方程联立可得,由根与系数的关系可得,由弦长公式可得,可解得。分情况讨论,求线段的中点,直线的斜率,进而可求线段的垂直平分线方程。
详解:(1)设,则
将代入圆方程得:点的轨迹
(注:学生不写也不扣分)
(2)由题意可设直线方程为:,
由得:
所以
所以.
当时,中点纵坐标,代入得:
中点横坐标,斜率为
故的垂直平分线方程为:
当时,同理可得的垂直平分线方程为:
所以的垂直平分线方程为:或.
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
【题目】在考察黄烟经过药物处理和发生青花病的关系时,得到如下数据:在试验的470株黄烟中,经过药物处理的黄烟有25株发生青花病,60株没有发生青花病;未经过药物处理的有185株发生青花病,200株没有发生青花病.试推断药物处理跟发生青花病是否有关系.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若=10,求y与x的函数解析式;
(2)若要求“维修次数不大于”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?