题目内容
【题目】函数y=f(x)满足对任意x∈R都有f(x+2)=f(﹣x)成立,且函数y=f(x﹣1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)=( )
A.12
B.8
C.4
D.0
【答案】C
【解析】解:∵函数y=f(x)满足对任意x∈R都有f(x+2)=f(﹣x)成立, 且函数y=f(x﹣1)的图象关于点(1,0)对称
∴f(x+4)=﹣f(x+2)=﹣[﹣f(x)]=f(x).
∴函数的周期为4.
∵函数f(x)为奇函数,∴f(0)=0,∴f(2)=﹣f(0)=0.
∵f(1)=4,∴f(﹣1)=﹣f(1)=﹣4,f(2)=f(0)=0,
f(2016)+f(2017)+f(2018)
=f(0)+f(1)+f(2)
=0+4+0
=4.
故选:C.
【考点精析】掌握函数的值是解答本题的根本,需要知道函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
练习册系列答案
相关题目