题目内容

已知P、Q、M、N四点都在中心为坐标原点,离心率为
2
2
,左焦点为F(-1,0)的椭圆C上,已知
PF
FQ
共线,
MF
FN
共线,
PF
MF
=0.
(1)求椭圆C的方程;
(2)试用直线PQ的斜率k(k≠0)表示四边形PMQN的面积S,求S的最小值.
分析:(1)设出椭圆方程,利用离心率为
2
2
,左焦点为F(-1,0)的椭圆C上,求出几何量,即可得到椭圆的方程;
(2)设出直线方程,代入椭圆方程,求出|PQ|,|MN|,表示出面积,利用基本不等式,即可得到结论.
解答:解:(1)设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),则a2=b2+c2
c=1,
c
a
=
2
2

∴a=
2
,b=1
∴椭圆的方程为
x2
2
+y2=1

(2)由题意,PQ与MN垂直于F,设PQ的方程为y=k(x+1),与椭圆方程联立,可得
(1+2k2)x2+4k2x+2k2-2=0
设点P(x1,y1),Q(x2,y2),则x1+x2=-
4k2
1+2k2
x1x2=
2k2-2
1+2k2

∴|PQ|=
1+k2
|x1-x2|
=
2
2
(1+k2)
1+2k2

同理,|MN|=
2
2
(1+k2)
2+k2

∴SPMQN=
1
2
|PQ||MN|
=2-
2k2
2k4+5k2+2
=2-
2
2k2+
2
k2
+5
16
9

当且仅当k=±1时,取等号
∴四边形PMQN的面积的最小值为
16
9
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查四边形面积的计算,考查基本不等式的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网