题目内容

15.函数y=sin(2x-$\frac{π}{3}$)的单调递减区间是(  )
A.[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z)B.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

分析 由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,由此求得x的范围即是函数的单调递减区间.

解答 解:由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,
可得 $kπ+\frac{5}{12}π≤x\;≤kπ+\frac{11}{12}π,k∈Z$,
故函数$y=sin(2x-\frac{π}{3})$的单调递减区间是[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z),
故选:C.

点评 本题主要考查正弦函数的单调区间的求法,根据正弦函数的单调性建立不等式是解决本题的关键.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网