ÌâÄ¿ÄÚÈÝ
É躯Êýf(x)=
mx3+(4+m)x2£¬g(x)=alnx£¬ÆäÖÐa¡Ù0£®
£¨ I £©Èôº¯Êýy=g£¨x£©Í¼Ïóºã¹ý¶¨µãP£¬ÇÒµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ÇómµÄÖµ£»
£¨¢ò£©µ±a=8ʱ£¬ÉèF£¨x£©=f¡ä£¨x£©+g£¨x£©£¬ÌÖÂÛF£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ó£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬ÉèG(x)=
£¬ÇúÏßy=G£¨x£©ÉÏÊÇ·ñ´æÔÚÁ½µãP¡¢Q£¬Ê¹¡÷OPQ£¨OΪԵ㣩ÊÇÒÔOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬ÇÒ¸ÃÈý½ÇÐÎб±ßµÄÖеãÔÚyÖáÉÏ£¿Èç¹û´æÔÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
1 |
3 |
£¨ I £©Èôº¯Êýy=g£¨x£©Í¼Ïóºã¹ý¶¨µãP£¬ÇÒµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ÇómµÄÖµ£»
£¨¢ò£©µ±a=8ʱ£¬ÉèF£¨x£©=f¡ä£¨x£©+g£¨x£©£¬ÌÖÂÛF£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ó£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬ÉèG(x)=
|
£¨I£©Áîlnx=0£¬Ôòx=1£¬¼´º¯Êýy=g£¨x£©µÄͼÏó¹ý¶¨µãP£¨1£¬0£©£¬
ÓÖµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ËùÒÔf£¨1£©=
m+£¨4+m£©=0£¬
½âµÃm=-3£®
£¨II£©F£¨x£©=mx2+2£¨4+m£©x+8lnx£¬¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
F¡ä£¨x£©=2mx+£¨8+2m£©+
=
=
£®
¡ßx£¾0£¬Ôòx+1£¾0£¬
¡àµ±m¡Ý0ʱ£¬2mx+8£¾0£¬F¡ä£¨x£©£¾0£¬´ËʱF£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±m£¼0ʱ£¬ÓÉF¡ä£¨x£©£¾0µÃ0£¼x£¼-
£¬F¡ä£¨x£©£¼0£¬µÃx£¾-
£¬
´ËʱF£¨x£©ÔÚ£¨0£¬-
£©ÉÏΪÔöº¯Êý£¬ÔÚ£¨-
£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬
×ÛÉÏ£¬µ±m¡Ý0ʱ£¬F£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
m£¼0ʱ£¬ÔÚ£¨0£¬-
£©ÉÏΪÔöº¯Êý£¬ÔÚ£¨-
£¬+¡Þ£©ÉÏΪ¼õº¯Êý£®
£¨III£©ÓÉÌõ¼þ£¨I£©ÖªG£¨x£©=
£¬
¼ÙÉèÇúÏßy=G£¨x£©ÉÏ´æÔÚÁ½µãP¡¢QÂú×ãÌâÒ⣬ÔòP¡¢QÁ½µãÖ»ÄÜÔÚyÖáÁ½²à£¬
ÉèP£¨t£¬G£¨t£©£©£¨t£¾0£©£¬ÔòQ£¨-t£¬t3+t2£©£¬
¡ß¡ÏPOQÊÇÒÔOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬
¡à
•
=0£¬¡à-t2+G£¨t£©£¨t3+t2£©=0¢Ù£®
£¨1£©µ±0£¼t¡Ü1ʱ£¬G£¨t£©=-t3+t2£¬
´Ëʱ·½³Ì¢ÙΪ-t2+£¨-t3+t2£©£¨t3+t2£©=0£¬»¯¼òµÃt4-t2+1=0£¬
´Ë·½³ÌÎ޽⣬Âú×ãÌõ¼þµÄP¡¢QÁ½µã²»´æÔÚ£®
£¨2£©µ±t£¾1ʱ£¬G£¨t£©=alnt£¬
·½³Ì¢ÙΪ£º-t2+alnt•£¨t3+t2£©=0£¬¼´
=£¨t+1£©lnt£¬
Éèh£¨t£©=£¨t+1£©lnt£¨t£¾1£©£¬Ôòh¡ä£¨t£©=lnt+
+1£¬
µ±t£¾1ʱ£¬h¡ä£¨t£©£¾0£¬¼´h£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¡àh£¨t£©µÄÖµÓòΪ£¨h£¨1£©£¬+¡Þ£©£©£¬¼´£¨0£¬+¡Þ£©£¬
¡à
£¾0£¬¡àa£¾0£®
×ÛÉÏËùÊö£¬Èç¹û´æÔÚÂú×ãÌõ¼þµÄP¡¢Q£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇa£¾0£®
ÓÖµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ËùÒÔf£¨1£©=
1 |
3 |
½âµÃm=-3£®
£¨II£©F£¨x£©=mx2+2£¨4+m£©x+8lnx£¬¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
F¡ä£¨x£©=2mx+£¨8+2m£©+
8 |
x |
2mx2+(8+2m)x+8 |
x |
(2mx+8)(x+1) |
x |
¡ßx£¾0£¬Ôòx+1£¾0£¬
¡àµ±m¡Ý0ʱ£¬2mx+8£¾0£¬F¡ä£¨x£©£¾0£¬´ËʱF£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±m£¼0ʱ£¬ÓÉF¡ä£¨x£©£¾0µÃ0£¼x£¼-
4 |
m |
4 |
m |
´ËʱF£¨x£©ÔÚ£¨0£¬-
4 |
m |
4 |
m |
×ÛÉÏ£¬µ±m¡Ý0ʱ£¬F£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
m£¼0ʱ£¬ÔÚ£¨0£¬-
4 |
m |
4 |
m |
£¨III£©ÓÉÌõ¼þ£¨I£©ÖªG£¨x£©=
|
¼ÙÉèÇúÏßy=G£¨x£©ÉÏ´æÔÚÁ½µãP¡¢QÂú×ãÌâÒ⣬ÔòP¡¢QÁ½µãÖ»ÄÜÔÚyÖáÁ½²à£¬
ÉèP£¨t£¬G£¨t£©£©£¨t£¾0£©£¬ÔòQ£¨-t£¬t3+t2£©£¬
¡ß¡ÏPOQÊÇÒÔOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬
¡à
OP |
OQ |
£¨1£©µ±0£¼t¡Ü1ʱ£¬G£¨t£©=-t3+t2£¬
´Ëʱ·½³Ì¢ÙΪ-t2+£¨-t3+t2£©£¨t3+t2£©=0£¬»¯¼òµÃt4-t2+1=0£¬
´Ë·½³ÌÎ޽⣬Âú×ãÌõ¼þµÄP¡¢QÁ½µã²»´æÔÚ£®
£¨2£©µ±t£¾1ʱ£¬G£¨t£©=alnt£¬
·½³Ì¢ÙΪ£º-t2+alnt•£¨t3+t2£©=0£¬¼´
1 |
a |
Éèh£¨t£©=£¨t+1£©lnt£¨t£¾1£©£¬Ôòh¡ä£¨t£©=lnt+
1 |
t |
µ±t£¾1ʱ£¬h¡ä£¨t£©£¾0£¬¼´h£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¡àh£¨t£©µÄÖµÓòΪ£¨h£¨1£©£¬+¡Þ£©£©£¬¼´£¨0£¬+¡Þ£©£¬
¡à
1 |
a |
×ÛÉÏËùÊö£¬Èç¹û´æÔÚÂú×ãÌõ¼þµÄP¡¢Q£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇa£¾0£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿