题目内容
【题目】已知椭圆的离心率,在椭圆上.
(1)求椭圆的标准方程;
(2)已知动直线(斜率存在)与椭圆相交于点两点,且的面积,若为线段的中点.点在轴上投影为,问:在轴上是否存在两个定点,使得为定值,若存在求出的坐标;若不存在,请说明理由.
【答案】(1) (2)见解析
【解析】
(1)由题意,根据题设条件,列出关于的方程,求得的值,即可得到椭圆的方程;
(2)设直线的方程,联立方程组,利用根与系数的关系,以及弦长公式,求得,再由点到直线的距离公式,求得点到直线的距离,得出,求得, 进而得出的值,即可得到结论.
(1)由题可知,
解之得:
故椭圆的标准方程为:
(2)设直线的方程为
代入椭圆方程,消去得:
若设
则
此时
又点到直线的距离:
∴
∴
假设存在符合题意的两个定点
∵
∴
又
故当,即时,为定值.
故存在两点满足题意.
练习册系列答案
相关题目