题目内容
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,得到如图的频率分布直方图(图1).
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到图2中数据,根据表中的数据,能否在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系?
【答案】(1)820;(2) 在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系..
【解析】【试题分析】(1)依题意设出成等差数列的的四项,利用和为求出公差,求出每一项后可求得视力在以下的频率,由此估计全年级视力在以下的人数.(2)通过计算可知在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.
【试题解析】
(Ⅰ)由图可知,第一组有3人,第二组7人,第三组27人,
设后四组的频数构成的等差数列的公差为d,
则(27-d)+(27-2d)+(27-3d)=63,解得d=3
所以后四组频数依次为
所以视力在5.0以下的频数为3+7+27+24+21=82人,
故全年级视力在5.0以下的人数约为1000×0.82=820(人)
(Ⅱ)
因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.
【题目】2017年交警统计了某路段过往车辆的车速大小与发生交通事故的次数,得到如表所示的数据:
车速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次数y | 1 | 3 | 6 | 9 | 11 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出y关于x的线性回归方程=x+;
(3)根据(2)所得速度与事故发生次数的规律,试说明交管部门可采取什么措施以减少事故的发生.
附:=,=-