题目内容
11.若$f(x)=\left\{{\begin{array}{l}{{3^x},x∈[-1,0)}\\{-{{(\frac{1}{3})}^x},x∈[0,1]}\end{array}}\right.$,则f[f(log32)]的值为$\frac{\sqrt{3}}{3}$.分析 判断对数值,然后求解分段函数的值即可.
解答 解:log32∈(0,1),
$f(x)=\left\{{\begin{array}{l}{{3^x},x∈[-1,0)}\\{-{{(\frac{1}{3})}^x},x∈[0,1]}\end{array}}\right.$,∴f(log32)=$-{(\frac{1}{3})}^{{log}_{3}2}$=-$\frac{1}{2}$.
f[f(log32)]=f(-$\frac{1}{2}$)=${3}^{-\frac{1}{2}}$=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.
点评 本题考查分段函数的应用,函数值的求法,考查计算能力.
练习册系列答案
相关题目
19.已知实数x,y满足条件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$若目标函数z=3x+y的最小值为5,其最大值为( )
A. | 10 | B. | 12 | C. | 14 | D. | 15 |
19.某三棱锥的三视图如图所示,则该三棱锥的体积是( )
A. | 4 | B. | $\frac{8}{3}$ | C. | 2 | D. | $\frac{4}{3}$ |