题目内容

连接双曲线
x2
a2
-
y2
b2
=1
y2
b2
-
x2
a2
=1
的四个顶点构成的四边形的面积为S1,连接它们的四个焦点构成的四边形的面积为S2,则S1:S2的最大值是(  )
A.2B.1C.
1
2
D.
1
4
设双曲线
x2
a2
-
y2
b2
=1
的右顶点为A,其坐标是(a,0),由焦点为C,坐标为(
a2+b2
,0);
设双曲线
y2
b2
-
x2
a2
=1
上顶点为B,坐标为(0,b),上焦点为D,坐标为(0,
a2+b2
).O为坐标原点.
则S1=4S△OAB=2ab,S2=4S△OCD=2(a2+b2),
所以
S1
S2
=
ab
a2+b2
ab
2ab
=
1
2

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网