题目内容

已知向量
a
b
满足|
a
|=1,|
b
|=2,
a
b
的夹角为60°,向量
c
=2
a
+
b

(1)求
c
的模;
(2)若向量
d
=m
a
-
b
d
c
,求实数m的值.
分析:(1)根据)|
c
|2=(2
a
+
b
2 =4
a
2 +4
a
b
+
b
2 ,以及|
a
|=1,|
b
|=2,求出|
c
|2的值,即可得到
c
的模.
(2)有题意知 存在实数λ,使
d
c
,即 m
a
-
b
=λ(2
a
+
b
),可得 2λ=m,λ=-1,由此求得实数m的值.
解答:解:(1)|
c
|2=(2
a
+
b
2 =4
a
2 +4
a
b
+
b
2 =4+4×1×2×cos60°+4=12,
|
c
|=2
3

(2)因为
d
c

所以存在实数λ,使
d
c
,即 m
a
-
b
=λ(2
a
+
b
).
a
b
 不共线,
所以2λ=m,λ=-1,
解得m=-2.
点评:本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网