题目内容

(2012•浙江模拟)已知向量
a
b
满足|
a
|=2|
b
|≠0,且关于x的函数f(x)=2x3+3|
a
|x2+6
a
b
x+5 在实数集R上单调递增,则向量
a
b
的夹角的取值范围是(  )
分析:求导数,利用函数f(x)=2x3+3|a|x2+6a•bx+5 在实数集R上单调递增,可得判别式小于等于0在R上恒成立,再利用|
a
|=2|
b
|≠0,利用向量的数量积,即可得到结论.
解答:解:求导数可得f′(x)=6x2+6|
a
|x+6
a
b
,则由函数f(x)=2x3+3|a|x2+6a•bx+5 在实数集R上单调递增,
可得f′(x)=6x2+6|
a
|x+6
a
b
≥0恒成立,即 x2+|
a
|x+
a
b
≥0恒成立,故判别式△=
a
2
-4
a
b
≤0 恒成立,
再由|
a
|=2|
b
|≠0,可得 4 |
b
|
2
≤8|
b
|•|
b
|cos<
a
b
>,
∴cos<
a
b
>≥
1
2

∴<
a
b
>∈[0,
π
3
],
故选B.
点评:本题考查导数知识的运用,考查函数的单调性,考查向量的数量积,解题的关键是利用判别式小于等于0在R上恒成立,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网