题目内容

2.正三角形ABC的边长为4,将它沿高AD翻折,使得点B与点C的距离为2,此时四面体ABCD的外接球的表面积为$\frac{52π}{3}$.

分析 三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.

解答 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
正三棱柱ABC-A1B1C1的中,底面边长为1,棱柱的高为$2\sqrt{3}$,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,表面积为:4πr2
球心到底面的距离为$\sqrt{3}$,
底面中心到底面三角形的顶点的距离为:$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$×2=$\frac{2\sqrt{3}}{3}$,
所以球的半径为r=$\sqrt{({\sqrt{3})}^{2}+(\frac{2\sqrt{3}}{3})^{2}}$=$\sqrt{\frac{13}{3}}$.
外接球的表面积为:4πr2=$\frac{52π}{3}$.
故答案为:$\frac{52π}{3}$.

点评 本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网