题目内容
【题目】已知数列{an}的前n项和为Sn,且a1=,an+1=Sn+(n∈N*,t为常数).
(Ⅰ)若数列{an}为等比数列,求t的值;
(Ⅱ)若t>﹣4,bn=lgan+1,数列{bn}前n项和为Tn,当且仅当n=6时Tn取最小值,求实数t的取值范围.
【答案】(1)t=4 (2)
【解析】
试题分析:(1)先根据和项与通项关系求项之间递推关系,再根据等比数列定义确定,代入,解得t的值;(2)根据等比数列定义得a2,a3,a4…an+1成等比数列,因此数列{bn}是等差数列,根据等差数列前n项和取最小值等价于项b6<0且b7>0,代入得不等式,解得实数t的取值范围.
试题解析:(I)∵
(1)﹣(2)得:an+1=2an(n≥2)
∵数列{an}为等比数列,∴
∵,a1=,
∴,∴t=4…(6分)
(II),an+1=2an(n>1),∴
∵a2,a3,a4…an+1成等比数列,bn=lgan+1,
∴数列{bn}是等差数列
∵数列{bn}前n项和为Tn,当且仅当n=6时,Tn取最小值,∴b6<0且b7>0
可得0<a7<1且a8>1,
∴0<16+4t<1且32+2t>1,
∴
【题目】2019年4月22日是第50个世界地球日,半个世纪以来,这一呼吁热爱地球环境的运动已经演变为席卷全球的绿色风暴,让越来越多的人认识到保护环境、珍惜自然对人类未来的重要性.今年,自然资源部地球日的主题是“珍爱美丽地球,守护自然资源”.某中学举办了以“珍爱美地球,守护自然资源”为主题的知识竞赛.赛后从该校高一和高二年级的参赛者中随机抽取100人,将他们的竞赛成绩分为7组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布表:
现规定,“竞赛成绩≥80分”为“优秀”“竞赛成绩<80分”为“非优秀”
(Ⅰ)请将下面的2×2列联表补充完整;
优秀 | 非优秀 | 合计 | |
高一 | 50 | ||
高二 | 15 | ||
合计 | 100 |
(Ⅱ)判断是否有99%的把握认为“竞赛成绩与年级有关”?
附:独立性检验界值