题目内容
【题目】已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.
(1)若,求直线与轴的交点坐标;
(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.
【答案】(1)(2)见解析
【解析】
(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;
(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程.代入验证即可.注意分和说明.
解:本题考查直线与椭圆的位置关系的综合,
(1)由题知,,则.因为,所以,
则直线的方程为,联立,可得
故.则,直线的方程为.令,
得,故直线与轴的交点坐标为.
(2)证明:因为,,所以.设点,则.
设
当时,设,则,此时直线与轴垂直,
其直线方程为,
直线的方程为,即.
在方程中,令,得,得交点为,显然在椭圆上.
同理当时,交点也在椭圆上.
当时,可设直线的方程为,即.
直线的方程为,联立方程,
消去得,化简并解得.
将代入中,化简得.
所以两直线的交点为.
因为
,
又因为,所以,
则,
所以点在椭圆上.
综上所述,直线与直线的交点在椭圆上.
练习册系列答案
相关题目