题目内容
【题目】如图,四边形ABCD为菱形,四边形ACFE为平行四边形,设BD与AC相交于点G,AB=BD=AE=2,∠EAD=∠EAB.
(1)证明:平面ACFE⊥平面ABCD;
(2)若直线AE与BC的夹角为60°,求直线EF与平面BED所成角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)先由已知条件求得,得到,再结合菱形的对角线垂直,可得平面,即可证得平面ACFE⊥平面ABCD;
(2)建立空间直角坐标系,求得各点的坐标,设的坐标,根据条件求出,再求得直线的方向向量和平面的法向量,利用向量的夹角公式,即可求解.
(1)证明:连接EG,因为AB=BD=AE=2,∠EAD=∠EAB,
可得△EAD≌EAB,∴ED=EB.
∵G为BD的中点,所以EG⊥BD,因为四边形ABCD为菱形,∴AC⊥BD,
∴BD⊥平面ACEF,因为BD平面ABCD;
∴平面ACFE⊥平面ABCD;
(2)因为EF∥AG,直线EF与平面BED所成角即为AG与平面BED所成角;
以G为原点建立如图所示空间直角坐标系,如图所示,
设E(a,0,b)则(a,0,b),
因为(,﹣1,0),
所以由条件可得:||2=(a)2+b2=4且a+3=2×2×cos60°=2;
解得,所以(,﹣1,),因为(0,2,0);
所以可取平面BED的法向量(2,0,﹣1),因为(﹣2,0,0),
设直线EF与平面BED所成角为θ,则sinθ,
∵0<θ;∴sosθ;
既直线EF与平面BED所成角的余弦值为.
【题目】近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工、两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中,两种支付方式都没有使用过的有5人;使用了、两种方式支付的员工,支付金额和相应人数分布如下:
支付金额(元) 支付方式 | 大于2000 | ||
使用 | 18人 | 29人 | 23人 |
使用 | 10人 | 24人 | 21人 |
依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月、两种支付方式都使用过的概率为______.