题目内容

9.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)-f(x)g′(x)>0,且f(x)=axg(x)(a>0a≠1),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$.若数列$\frac{f(n)}{g(n)}$的前n项和小于126,则n的最大值为5.

分析 f(x)=axg(x)(a>0,a≠1),可得ax=$\frac{f(x)}{g(x)}$.由于f′(x)g(x)-f(x)g′(x)>0,可得(ax)′=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$>0,可得函数y=ax单调递增,a>1.由于$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$.解得a=2.由数列$\frac{f(n)}{g(n)}$的前n项和=2+22+…+2n,利用等比数列的前n项和公式即可得出.

解答 解:∵f(x)=axg(x)(a>0,a≠1),
∴ax=$\frac{f(x)}{g(x)}$.
∵f′(x)g(x)-f(x)g′(x)>0,
∴(ax)′=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$>0,
∴函数y=ax单调递增,
∴a>1.
∵$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$.
∴a+a-1=$\frac{5}{2}$,a>1.
解得a=2.
若数列$\frac{f(n)}{g(n)}$的前n项和=2+22+…+2n=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2<126,
∴2n+1<27
解得n<6,
∴满足条件的n的最大值为:5.
故答案为:5.

点评 本题考查了利用导数研究函数的单调性、等比数列的前n和公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网