题目内容

6.已知命题p:?x∈[0,+∞),($\frac{1}{2}$)x<m;命题q:?x∈R,x2+2>m2
(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

分析 若命题p为真命题,则m>1;若命题q为真命题,则$-\sqrt{2}<m<\sqrt{2}$.(1)若(¬p)∧q为真命题,则$\left\{\begin{array}{l}{m≤1}\\{-\sqrt{2}<m<\sqrt{2}}\end{array}\right.$,解得即可.
(2)若p∨q为真命题,p∧q为假命题,则p与q必然一真一假,解出即可.

解答 解:命题p:?x∈[0,+∞),($\frac{1}{2}$)x<m,则m>1;
命题q:?x∈R,x2+2>m2,∴m2<2,解得$-\sqrt{2}<m<\sqrt{2}$.
(1)若(¬p)∧q为真命题,∴$\left\{\begin{array}{l}{m≤1}\\{-\sqrt{2}<m<\sqrt{2}}\end{array}\right.$,解得$-\sqrt{2}<m≤1$.
∴实数m的取值范围是$(-\sqrt{2},1]$;
(2)若p∨q为真命题,p∧q为假命题,
则p与q必然一真一假,
若p真q假,则$\left\{\begin{array}{l}{m>1}\\{m≤-\sqrt{2}或m≥\sqrt{2}}\end{array}\right.$,解得$m≥\sqrt{2}$.
若q真p假,则$\left\{\begin{array}{l}{m≤1}\\{-\sqrt{2}<m<\sqrt{2}}\end{array}\right.$,解得$-\sqrt{2}<m≤1$.
综上可得:实数m的取值范围是$(-\sqrt{2},1]$∪$[\sqrt{2},+∞)$.

点评 本题考查了函数的性质、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网