题目内容
【题目】设等差数列{an}满足(1﹣a1008)5+2016(1﹣a1008)=1,(1﹣a1009)5+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则( )
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009
【答案】C
【解析】解:(1﹣a1009)5+2016(1﹣a1009)=﹣1,变为:(﹣1+a1009)5+2016(﹣1+a1009)=1,
令f(x)=x5+2016x﹣1,f′(x)=5x4+2016>0,因此方程f(x)=0最多有一个实数根.
∵f(0)=﹣1<0,f(1)=2016>0,
因此f(x)=0有一个实数根x0∈(0,1).
∴1﹣a1008=a1009﹣1>0,
可得a1008+a1009=2,a1008<1<a1009.
S2016= = =2016.
所以答案是:C.
【考点精析】认真审题,首先需要了解等差数列的前n项和公式(前n项和公式:).
练习册系列答案
相关题目
【题目】已知函数的一系列对应值如下表:
-1 | 1 | 3 | 1 | -1 | 1 | 3 |
(1)根据表格提供的数据画出函数的图像并求出函数解析式;
(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.