题目内容
已知圆C的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C相交于A、B两点,且=6,求圆C的方程.
x2+(y+1)2=18.
解析
已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积
求过直线与已知圆的交点,且在两坐标轴上的四个截距之和为8的圆的方程。
已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R).(1)求直线l1、l2的方程;(2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C.①当a=4,b=-2时,求圆C的方程;②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.
已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于A、B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.
已知圆,设点是直线上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为.(1)若,求直线的方程;(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值.
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA.
求半径为,圆心在直线:上,且被直线:所截弦的长为的圆的方程.