题目内容
【题目】定义区间[x1 , x2]长度为x2﹣x1(x2>x1),已知函数f(x)= (a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值是 .
【答案】3
【解析】解:函数f(x)= (a∈R,a≠0)的定义域是{x|x≠0},则[m,n]是其定义域的子集, ∴[m,n](﹣∞,0)或(0,+∞).
f(x)= = 在区间[m,n]上时增函数,则有: ,
故m,n是方程f(x)= =x的同号相异的实数根,
即m,n是方程(ax)2﹣(a2+a)x+1=0同号相异的实数根.
那么mn= ,m+n= ,只需要△>0,
即(a2+a)2﹣4a2>0,解得:a>1或a<﹣3.
那么:n﹣m= = ,
故n﹣m的最大值为 ,此时 ,解得:a=3.
即在区间[m,n]的最大长度为 ,此时a的值等于3.
所以答案是3.
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零,以及对函数的值域的理解,了解求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.
【题目】数据显示,某公司2018年上半年五个月的收入情况如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(万元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根据上述数据,在建立该公司2018年月收入(万元)与月份的函数模型时,给出两个函数模型与供选择.
(1)你认为哪个函数模型较好,并简单说明理由;
(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据,)
【题目】某宾馆有间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表:
每间客房的定价 | 220元 | 200元 | 180元 | 160元 |
每天的入住率 |
对于每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为( )
A. 220元 B. 200元 C. 180元 D. 160元