题目内容

已知定义域为R的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.给出下列结论:f(
π
4
)=
1
2
;②f(x)为奇函数;③f(x)为周期函数;④f(x)在(0,x)内单调递减.其中正确的结论序号是(  )
A.②③B.②④C.①③D.①④
令x=y=
π
4
,根据f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1

f(
π
2
)+f(0)=2f(
π
4
)  •
2
2
f(
π
4
)=
2
2
故①不对
∵f(x+y)+f(x-y)=2f(x)cosy
令x=0,则
f(y)+f(-y)=f(0)cosy=0
f(-y)=-f(y)
所以f(x)是奇函数   故②对.
令x=
π
2
,由f(0)=0,f(
π
2
)=1知④不对
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网