题目内容
已知角A、B为锐角,且cos(A+B)•sinB=sinA,则tanA的最大值是( )A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_ST/0.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_ST/1.png)
C.3
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_ST/2.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_ST/3.png)
【答案】分析:由条件可得-cosCsinB=sinA,利用正弦定理和余弦定理可得3a2+b2=c2,由 tan2A=
-1,且A为锐角,判断知,
求tanA的最大值即求cosA的最小值,由基本不等式求出cosA的最小值,从而求得tanA的最大值.
解答:解:由cos(A+B)sinB=sinA得-cosCsinB=sinA,
利用正弦定理和余弦定理,-
×b=a,化简可得 3a2+b2=c2.
由 tan2A=
-1,且A为锐角可得,可得 cosA>0,tanA>0.
只要求出cosA的最小值,就可求得tanA的最大值.
又cosA=
=
≥
,当且仅当
b=c时,等号成立.
即cosA的最小值为
. 故tan2A 的最大值为
,
故tanA的最大值
=
.
点评:本题主要考查三角函数的恒等变换及化简求值,正弦定理和余弦定理、基本不等式的应用,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/0.png)
求tanA的最大值即求cosA的最小值,由基本不等式求出cosA的最小值,从而求得tanA的最大值.
解答:解:由cos(A+B)sinB=sinA得-cosCsinB=sinA,
利用正弦定理和余弦定理,-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/1.png)
由 tan2A=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/2.png)
只要求出cosA的最小值,就可求得tanA的最大值.
又cosA=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/6.png)
即cosA的最小值为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/8.png)
故tanA的最大值
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230037501837524/SYS201311012300375018375016_DA/10.png)
点评:本题主要考查三角函数的恒等变换及化简求值,正弦定理和余弦定理、基本不等式的应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目