题目内容
从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于 .
已知长方体中,,,为的中点,如图所示.
(1)在所给图中画出平面与平面的交线(不必说明理由);
(2)证明:平面;
(3)求平面与平面所成锐二面角的大小.
已知函数(常数)是定义在上的奇函数,且.
(Ⅰ)求函数的解析式;
(Ⅱ)判断并用定义证明在上的单调性;
(Ⅲ)解关于的不等式.
下列函数中,在其定义域内既是奇函数又是减函数的是( )
A. B.
C. D.
已知集合
(1)若,求的概率;
(2)若,求的概率.
设和为栓曲线的两个焦点,若,,是正三角形的三个顶点,则双曲线的离心率为( )
A. B.2
C. D.3
下列命题中的假命题是( )
A. B.
C. D.
设是等比数列的前项的和,若,则的值是 .
若函数在区间[-3,1]上不是单调函数,则实数的取值范围是( )
A.[-4,1] B.[-3,1]
C.(-6,2) D.(-6,1)