题目内容
【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:
(1)记集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的__________________;
(2)“a=1”是“函数f(x)=|2x-a|在区间上为增函数”的________________.
【答案】 充要条件 充分不必要条件
【解析】(1)当p=3时,A={-1,2,3},此时A∩B=B;
若A∩B=B,则必有p=3.
因此“p=3”是“A∩B=B”的充要条件.
(2)当a=1时,f(x)=|2x-a|=|2x-1|在上是增函数;
但由f(x)=|2x-a|在区间上是增函数不能得到a=1,
如当a=0时,函数f(x)=|2x-a|=|2x|在区间上是增函数.
因此“a=1”是“函数f(x)=|2x-a|在区间上为增函数”的充分不必要条件.
练习册系列答案
相关题目
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以为组距分成组:,,,,,,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.