题目内容

【题目】已知椭圆方程为分别是椭圆的左右焦点.

①若P是椭圆上的动点,延长M,使,则M的轨迹是圆;

②若是椭圆上的动点,则

③以焦点半径为直径的圆必与以长轴为直径的圆内切;

④点P为椭圆上任意一点,则椭圆的焦点三角形的面积为

以上说法中,正确的有(

A.①③④B.①③C.②③④D.③④

【答案】A

【解析】

利用椭圆的定义,判断①是否正确;利用椭圆的几何性质,判断②是否正确;根据两个圆的位置关系,判断③是否正确;利用椭圆的定义,结合余弦定理、三角形面积公式,计算出椭圆的焦点三角形的面积,由此判断④是否正确.

对于①,根据椭圆的定义可知,所以,也即的距离为定值,故的轨迹是圆,所以①正确.

对于②,当为左顶点时,,当为右顶点时,,所以,所以②错误.

对于③,以为直径的圆,圆心为,半径是.以长轴为直径的圆,圆心为,半径为.连接,则是三角形的中位线,由于,所以,即两圆圆心角等于两圆半径之差,故两个圆内切,故③正确.

对于④,设,依题意(*),由余弦定理得(**),而三角形的面积为(***),将(*)、(**)、(***)联立化简得,.故④正确.所以正确的为①③④.

故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网