题目内容
【题目】如图,在平面直角坐标系xOy中,已知直线l:xy2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为;
②求p的取值范围.
【答案】(1);(2)①证明见解析;②.
【解析】
(1)先确定抛物线焦点,再将点代入直线方程;(2)①利用抛物线点之间关系进行化简,结合中点坐标公式求证;②利用直线与抛物线位置关系确定数量关系:,解出p的取值范围.
(1)抛物线的焦点为
由点在直线上,得,即
所以抛物线C的方程为
(2)设,线段PQ的中点
因为点P和Q关于直线对称,所以直线垂直平分线段PQ,
于是直线PQ的斜率为,则可设其方程为
①由消去得
因为P 和Q是抛物线C上的相异两点,所以
从而,化简得.
方程(*)的两根为,从而
因为在直线上,所以
因此,线段PQ的中点坐标为
②因为在直线上
所以,即
由①知,于是,所以
因此的取值范围为
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:,.
【题目】某公司对4月份员工的奖金情况统计如下:
奖金(单位:元) | 8000 | 5000 | 4000 | 2000 | 1000 | 800 | 700 | 600 | 500 |
员工(单位:人) | 1 | 2 | 4 | 6 | 12 | 8 | 20 | 5 | 2 |
根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为( )
A.0B.1C.2D.3