题目内容
(14分)已知、是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足为坐标原点),,若椭圆的离心率等于
(1)求直线AB的方程; (2)若的面积等于,求椭圆的方程;
(3)在(2)的条件下,椭圆上是否存在点M使得的面积等于?若存在,求出点M的坐标;若不存在,说明理由.
(1)求直线AB的方程; (2)若的面积等于,求椭圆的方程;
(3)在(2)的条件下,椭圆上是否存在点M使得的面积等于?若存在,求出点M的坐标;若不存在,说明理由.
解: (Ⅰ)由知直线AB经过原点,又由
因为椭圆离心率等于,故
椭圆方程写成,设所以,
故直线AB的斜率,因此直线AB的方程为
(Ⅱ)连接AF1、BF1,由椭圆的对称性可知,
所以故椭圆方程为
(Ⅲ)由(Ⅱ)可以求得
假设在椭圆上存在点M使得的面积等于,设点M到直线AB的距离为d,则应有,所以
设直线,与AB平行且与AB距离为4,则M在直线上,直线方程为与椭圆方程联立消去x得方程
即故在椭圆上不存在点M使得的面积等于
因为椭圆离心率等于,故
椭圆方程写成,设所以,
故直线AB的斜率,因此直线AB的方程为
(Ⅱ)连接AF1、BF1,由椭圆的对称性可知,
所以故椭圆方程为
(Ⅲ)由(Ⅱ)可以求得
假设在椭圆上存在点M使得的面积等于,设点M到直线AB的距离为d,则应有,所以
设直线,与AB平行且与AB距离为4,则M在直线上,直线方程为与椭圆方程联立消去x得方程
即故在椭圆上不存在点M使得的面积等于
略
练习册系列答案
相关题目