题目内容
【题目】已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(2)=0,则不等式f(log2x)>0的解集为( )
A.(,4)B.(2,2)C.(,+∞)D.(4,+∞)
【答案】A
【解析】
根据题意,由函数f(x)的奇偶性与f(2)=0可得f(log2x)>0f(|log2x|)>f(2),结合函数f(x)的单调性分析可原不等式等价于|log2x|<2,解可得x的取值范围,即可得答案.
根据题意,函数f(x)是定义在R上的偶函数,且f(2)=0,
则f(log2x)>0f(|log2x|)>f(2),
又由f(x)在[0,+∞)上单调递减,f(|log2x|)>f(2)|log2x|<2,
变形可得:﹣2<log2x<2,
解得:x<2,不等式的解集为(,2);
故选:A.
【题目】某中学高三(3)班有学生50人,现调查该班学生每周平均体育锻炼时间的情况,得到如下频率分布直方图,其中数据的分组区间为:,,,,,
(1)从每周平均体育锻炼时间在的学生中,随机抽取2人进行调查,求这2人的每周平均体育锻炼时间都超过2小时的概率;
(2)已知全班学生中有40%是女姓,其中恰有3个女生的每周平均体育锻炼时间不超过4小时,若每周平均体育锻炼时间超过4小时称为经常锻炼,问:有没有90%的把握说明,经常锻炼与否与性别有关?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】某地计划在水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台发电机年净利润为5000万元;若某台发电机未运行,则该台发电机年维护费与年入流量有如下关系:
年入流量 | ||
一台未运行发电机年维护费 | 500 | 800 |
欲使水电站年净利润最大,应安装发电机多少台?