题目内容

【题目】已知平行四边形,平面平面,三角形为等边三角形,.分别为线段的中点.

1)求证:平面平面

2)求证:平面平面

3)求直线与平面所成角的正切值.

【答案】1)证明见解析;(2)证明见解析;(3

【解析】

1)根据分别为线段的中点,得到,由线面平行的判定定理得到平面,根据题意得到是平行四边形,有,由线面平行的判定定理得到平面,然后由面面平行的判定定理证明.

2)根据平面平面,三角形为等边三角形,得到平面,从而有平面平面,根据平面平面得证.

3)根据平行四边形,易得,有平面,得到即为直线与平面所成角,然后在中,求得,得到,再由求解.

1)因为分别为线段的中点,

所以平面

又因为

所以

所以是平行四边形,

所以平面

又因为

所以平面平面.

2)平面平面,三角形为等边三角形,

平面平面

所以平面平面

因为平面平面

所以平面平面

3)已知平行四边形

所以,又平面平面

所以平面

所以即为直线与平面所成角,

中,

所以

所以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网