题目内容
【题目】如图,直角坐标系中,圆的方程为,,,为圆上三个定点,某同学从点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子次时,棋子移动到,,处的概率分别为,,.例如:掷骰子一次时,棋子移动到,,处的概率分别为,,.
(1)分别掷骰子二次,三次时,求棋子分别移动到,,处的概率;
(2)掷骰子次时,若以轴非负半轴为始边,以射线,,为终边的角的余弦值记为随机变量,求的分布列和数学期望;
(3)记,,,其中.证明:数列是等比数列,并求.
【答案】(1)详见解析;(2)详见解析;(3)证明详见解析,.
【解析】
(1)由概率的乘法公式,可得所求值;
(2)随机变量的可能数值为1,,结合(1)运用概率的乘法公式,可随机变量的分布列和期望;
(3)易知,即,由条件推得,利用构造法可得,从而求得的值.
(1),,
,,
综上,
棋子位置 掷骰子次数 | |||
2 | |||
3 |
(2)随机变量的可能数值为1,.
综合(1)得
,
,
故随机变量的分布列为
.
(3)易知,因此,
而当时,,
又,
即.
因此,
故
即数列是以为首项,公比为的等比数列.
所以,
又
故.
练习册系列答案
相关题目