题目内容
【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中 ,则函数g(x)=cos(2x-φ)的图象( )
A.关于点 对称B.关于轴对称
C.可由函数f(x)的图象向右平移 个单位得到D.可由函数f(x)的图象向左平移个单位得到
【答案】B
【解析】
利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin(ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论.
函数f(x)=2sinxsin(x+3φ)是奇函数,其中,
∴y=2sinxsin(x+3φ)是奇函数,∴3φ=,φ=,则函数g(x)=cos(2x﹣φ)=cos(2x﹣).
当时,,,则函数不关于点对称,选项A错误;
当时,,则函数关于直线对称,选项B正确;
函数,
其图像向右平移个单位的解析式为,
选项C错误;
其图像向左平移个单位的解析式为,
选项D错误;
故选B.
【题目】2019年初,某市为了实现教育资源公平,办人民满意的教育,准备在今年8月份的小升初录取中在某重点中学实行分数和摇号相结合的录取办法.该市教育管理部门为了了解市民对该招生办法的赞同情况,随机采访了440名市民,将他们的意见和是否近三年家里有小升初学生的情况进行了统计,得到如下的2×2列联表.
赞同录取办法人数 | 不赞同录取办法人数 | 合计 | |
近三年家里没有小升初学生 | 180 | 40 | 220 |
近三年家里有小升初学生 | 140 | 80 | 220 |
合计 | 320 | 120 | 440 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为是否赞同小升初录取办法与近三年是否家里有小升初学生有关;
(2)从上述调查的不赞同小升初录取办法人员中根据近三年家里是否有小升初学生按分层抽样抽出6人,再从这6人中随机抽出3人进行电话回访,求3人中恰有1人近三年家里没有小升初学生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |