题目内容
【题目】已知双曲线的两个焦点为、,P为该双曲线上一点,满足,P到坐标原点O的距离为d,且,则________.
【答案】4或9
【解析】
求得双曲线的b,c,设P为右支上一点,|PF1|=m,|PF2|=n,运用双曲线的定义,结合条件,由两点的距离公式,解不等式可得a的正整数解.
双曲线1的b=2,c2=a2+4,
设P为右支上一点,|PF1|=m,|PF2|=n,
由双曲线的定义可得m﹣n=2a,
由题意可得4c2=mn,
又由三角形中线与边的关系可得:2 m2+2n2=(2c)2+(2d)2,
即m2+n2=2c2+2d2,
可得(m﹣n)2+2mn=4a2+8c2=2c2+2d2
又d2∈(25,81),
即25<5a2+12<81,
由a为正整数,可得a2=4或9,
故答案为:4或9.
【题目】2019年初,某市为了实现教育资源公平,办人民满意的教育,准备在今年8月份的小升初录取中在某重点中学实行分数和摇号相结合的录取办法.该市教育管理部门为了了解市民对该招生办法的赞同情况,随机采访了440名市民,将他们的意见和是否近三年家里有小升初学生的情况进行了统计,得到如下的2×2列联表.
赞同录取办法人数 | 不赞同录取办法人数 | 合计 | |
近三年家里没有小升初学生 | 180 | 40 | 220 |
近三年家里有小升初学生 | 140 | 80 | 220 |
合计 | 320 | 120 | 440 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为是否赞同小升初录取办法与近三年是否家里有小升初学生有关;
(2)从上述调查的不赞同小升初录取办法人员中根据近三年家里是否有小升初学生按分层抽样抽出6人,再从这6人中随机抽出3人进行电话回访,求3人中恰有1人近三年家里没有小升初学生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |