题目内容

【题目】已知等差数列{an}满足:a3=4,a5+a7=14,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的首项为a1,公差为d,

∵a3=4,a5+a7=14,

∴a1+2d=4,2a1+10d=14,

∴a1=2,d=1,

∴an=2+(n﹣1)×1=n+1,

Sn=n×2+ n(n﹣1)×1=

即an=n+1,Sn=


(2)解:∵an=n+1,∴an2﹣1=(n+1)2﹣1=n(n+2),

∴bn= = ),

∴Tn=b1+b2+b3+b4+b5+…+bn2+bn1+bn

= (1﹣ + + + + +…+ + +

= (1+ )=


【解析】(1)根据等差数列的通项公式,列出方程,解出首项和公差,从而写出通项公式和求和公式;(2)根据{an}的通项,化简bn , 并拆成两项的差,注意前面乘一个系数,然后运用裂项相消求和,应注意消去哪些项,保留哪些项,可以多写几项,找出规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网