题目内容
【题目】现给出以下四个命题:
①已知中,角A,B,C的对边为a,b,c,当,,时,满足条件的三角形共有1个;
②已知中,角A,B,C的对边为a,b,c,若三角形,这个三角形的最大角是;
③设是两条不同的直线,,是两个不同的平面,若,,则;
④设是两条不同的直线,,是两个不同的平面,若,,则
其中正确的序号是__________(写出所有正确说法的序号).
【答案】②④
【解析】
根据正弦定理判断①;根据余弦定理可判断②;根据空间中线面、线线位置关系可判断③;根据面面平行的性质可判断④.
①当,,时,由正弦定理可得,所以,故三角形不存在,①错;
②若三角形中,,可设,
所以,因此,故②正确;
③因为是两条不同的直线,,是两个不同的平面,若,,则或与异面,也可以相交;故③错;
④设是两条不同的直线,,是两个不同的平面,若,,由面面平行的性质,即可得出结果,故④正确;
故答案为②④
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得 = =9.97,s= = ≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数 作为μ的估计值 ,用样本标准差s作为σ的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.